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Abstract

In this paper we present a robust approach to construct a map between two trian-
gulated meshes, M and M ’ of arbitrary and possibly unequal genus. We introduce
a novel initial alignment scheme that allows the user to identify “landmark tunnels”
and/or a “constrained silhouette” in addition to the standard landmark vertices. To
describe the evolution of non-landmark tunnels we automatically derive a continu-
ous deformation from M to M ’ using a variational implicit approach. Overall, we
achieve a cross parameterization scheme that is provably robust in the sense that it
can map M to M ’ without constraints on their relative genus. We provide a num-
ber of examples to demonstrate the practical effectiveness of our scheme between
meshes of different genus and shape.
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1 Introduction

Cross parameterizations are maps between two input meshes that play a key
role in geometry processing algorithms such as morphing, attribute transfer
and mesh blending. There are three main factors that affect the quality of
the resulting map: mesh geometry, mesh topology and the placement of land-
mark vertices or hard constraints that the final mapping must maintain. This
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work focuses on minimizing the adverse affect that topology can have on a
cross parameterization. Early cross parameterization schemes considered only
input meshes that were topological spheres. More recent algorithms allow in-
puts with an arbitrary number of tunnels but require the input meshes to have
equal genus, mapping tunnel to tunnel. Other schemes which allow more gen-
eral inputs are not guaranteed to work and the authors do not provide a char-
acterization of the input meshes that can be processed successfully. Moreover,
the techniques have difficulty dealing with coarse meshes with many tunnels.
This can pose problems as input models frequently contain small tunnels that
do not reflect the topology of the original object. These tunnels are introduced
during model acquisition and/or through the use of standard mesh simplifi-
cation algorithms. Our approach has several advantages over these previous
techniques:

• We provide a provably robust method to generate mappings between meshes
of arbitrary and different genus.

• We extend Morse theory to provide a formal framework to analyze and
compare cross parameterization methods.

• We provide a completely parametric system that is not affected by convo-
luted geometry.

• We propose a novel initial alignment scheme which allows for landmark tun-
nels and constrained silhouettes in addition to standard landmark vertices.

The rest of the paper is outlined as follows. Related work is introduced in sec-
tion 2 and theoretical foundations are discussed in section 3. We introduce a
formalization in section 4 that provides a framework to guarantee the robust-
ness of a cross parameterization scheme and we discuss our implementation in
section 5. Optimizations to the map are explored in section 6 and results and
future work are discussed in section 7 and section 8 respectively.

2 Related Work

In this section we discuss the related work most relevant to this paper in the
areas of cross parameterization, functional morphing schemes, genus reduction
and Morse theory.

2.1 Surface Parameterization

A surface parameterization is a bijective map from a given input mesh to a
standard parametric domain. Closed surface genus-0 meshes can be parame-
terized to spherical domains using extensions of planar techniques (Gotsman
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et al., 2003; Praun and Hoppe, 2003; Sheffer et al., 2004; Friedel et al., 2005).
Meshes of arbitrary genus can be mapped to the plane (Gu et al., 2002; Carner
et al., 2005) or to a topologically equivalent base domain (Khodakovsky et al.,
2003; Kraevoy and Sheffer, 2004; Schreiner et al., 2004; Gu and Yau, 2003).
The work of (Jin et al., 2006) shows that all metric surfaces can be conformally
mapped to the sphere, the plane and the hyperbolic disk using Ricci flow. Re-
cent work by (Lee et al., 2006) maps a mesh of genus γ to a series of γ + 1
spherical domains. One of these domains represents a positive surface while
the remaining γ are negative surfaces. The original mesh surface is obtained
via boolean difference operations. A thorough exposition on the fundamentals
of surface parameterization can be found in (Floater and Hormann, 2004).

2.2 Cross Parameterization

Cross parameterizations determine a bijective mapping between a source mesh,
M , and a target mesh, M ’. A typical cross parameterization algorithm com-
putes a common base domain across which both M and M ’ are parameterized.
The final map between the two meshes is obtained by determining for each
target/source vertex, the source/target face that contains the vertex para-
metrically. Many of the existing approaches (Schreiner et al., 2004; Kraevoy
and Sheffer, 2004; Carner et al., 2005; Lee et al., 1999; Lin and Lee, 2005;
Li et al.,a, 2008) require M and M ’ to be of equal genus. This is due pri-
marily to the manner in which the common base domain is computed. The
work presented in (Kraevoy and Sheffer, 2004) is guaranteed to work only
on genus zero meshes, while the approach of (Schreiner et al., 2004) finds a
maximal non-separating cut graph on each input mesh, guaranteeing the suc-
cess of their algorithm on meshes of higher genus. The work of (Carner et al.,
2005) addresses the homotopy type of a mapping and provides a framework
to compute many canonical cuts rather than a single cut graph. The work of
(Lin and Lee, 2005) is unique in that it dynamically adds or removes vertices
to gradually transform the connectivity from M to M ’. (Li et al.,a, 2008) de-
tails how to use discrete Ricci flow, introduced in (Jin et al., 2007), to find a
globally unique and optimal map between two surfaces of arbitrary but equal
genus. Angular distortion is minimized by using a uniformization metric to
perform heat diffusion globally.

The methods of (DeCarlo and Gallier, 1996; Lee et al., 2006; Li et al.,b, 2008;
Bennett et al., 2007) allow for maps between meshes of different genus. (De-
Carlo and Gallier, 1996) requires the user to manually specify control meshes
with the same number of faces for both the source and target. The recent work
of (Lee et al., 2006) parameterizes meshes of genus γ via a single “positive”
spherical parameterization and γ “negative” spherical parameterizations. The
approach works well in many cases, however suffers from several key issues.
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During genus reduction two boundary loops are computed per tunnel and
fine detail in the original mesh may be lost due to the removal of mesh faces
between the boundary loops. Pseudo-negative meshes are generated for non-
landmark tunnels, however the authors do not provide details on their creation.
Furthermore, the algorithm fails on meshes with complicated geometry. The
work of (Li et al.,b, 2008) computes a surface pants decomposition introduced
by (Hatcher, 1999) and (de Verdiere and Lazarus, 2007). They require the user
to specify feature tunnels as well as two surgery points in M ’ per non-feature
tunnel of M (holes are introduced into M ’ at each of these surgery points).
While the manual specification required for non-feature tunnels gives the user
an added degree of control over the map, the approach becomes intractable
when the number of non-feature tunnels is high.

This paper is an extended version of the work in (Bennett et al., 2007) which
introduced the first provably robust cross parameterization algorithm between
meshes of unequal genus. This work extends the formal framework in (Bennett
et al., 2007) to handle a more general class of inputs. Optimizations to the
map are included and additional results are provided on data sets with more
complicated geometry and topology.

2.3 Functional Morphing Techniques

Functional morphing algorithms do not maintain the mapping between source
and target meshes, however they naturally handle morphing between meshes
of unequal genus. The approach of (Wiley et al., 2005) generates a morph
sequence between a series of models by computing a distance function for
each model. The surface at a given times step is an extremal surface extracted
from the weighted average of the functions associated with the input models.
The work of (Turk and O’Brien, 1999) computes a variational implicit function
in dimension n+1 to solve for the morph sequence between two n-dimensional
objects (time is the additional dimension).

2.4 Morse Theory

Morse theory characterizes the invariants of a manifold M in terms of the
topology of a function f defined on M . The work of (Ni et al., 2004) details
how to minimize the number of critical points of f to describe the genus of
M . A skeleton of the shape of M is provided by the Reeb graph which is
the contraction of the components of level sets of f to points. In recent years
Reeb graphs have been used as a search key in shape databases (Hilaga et al.,
2001), as well as to characterize complex scientific data (Edelsbrunner et al.,
2004). They provide a surface based method for genus reduction (Patane et al.,
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2004; Lee et al., 2006; Zhang et al., 2005) that does not require conversion of
input models as in volumetric approaches (Zhou et al., 2007; Wood et al.,
2004; Nooruddin and Turk, 1999). The notion of persistence was introduced
in (Edelsbrunner et al., 2002) and is used to rank the importance of topological
features (Gyulassy et al., 2005; Bremer et al., 2004). Jacobi sets are defined
in (Edelsbrunner and Harer, 2002) and have been used to explore scientific
data sets with multiple fields (Edelsbrunner et al., 2004). In this paper we
introduce the notion of a Morse field to formally characterize the correctness
of a parameterization scheme.

minimum maximum saddle regular

Fig. 1. A vertex is classified by its lower link. Here, simplices in the lower link are
drawn in red.

3 Foundation

For completeness we briefly introduce mathematical concepts related to Morse
theory and variational implicit functions that are used throughout this paper.

3.1 Morse theory

Let M be a 2-manifold without boundary embedded in R3 and let f : M → R
denote a smooth real-valued function over M. Assuming a local coordinate
system, at a point x ∈ M the gradient of f at x consists of two partial
derivatives and the Hessian is the matrix of second-order partial derivatives
of f . A point x is critical when the gradient of f at x is zero and is regular
otherwise. The value of f at a critical point is called a critical value and a
level set of f containing a critical point is called a critical level set. When a
critical point has a non-singular Hessian it is called non-degenerate. In the
neighborhood of a non-degenerate critical point x, a local coordinate system
can be constructed such that f(x0, x1) = f(x) ± x2

0 ± x2
1. Critical points are

categorized by their index which is equal to the number of minus signs in this
equation. A maximum has index 2, a minimum has index 0 and a saddle has
index 1.

A Morse function is a function f that satisfies two constraints: (1) all critical
points are non-degenerate and (2) for all critical points p 6= q, f(p) 6= f(q). A
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Morse function is minimal when f has the minimal number of critical points at
each index among all Morse functions on M. Morse theory provides techniques
to explore the topology of a manifold M via functions defined on the manifold
(Milnor, 1963; Matsumoto, 2002).

A k-simplex is the convex hull of k + 1 affinely independent points. A tri-
angulation M of a 2-manifold M is a set of 0, 1, and 2 simplices commonly
called vertices, edges, and faces. A piecewise linear (PL) function f on M is
defined by a set of scalar values at the vertices that are extended over the
edges and faces of M via linear interpolation. The function f is assumed to be
non-degenerate (all function values at vertices are unique) and Simulation of
Simplicity (Edelsbrunner and Mucke, 1988) guarantees this through symbolic
perturbation.

The star of a vertex v consists of all simplices in M that contain v and the link
of a vertex v, denoted Lk(v), consists of those simplices in the star of v that
do not contain v. The lower link, Lk (v), are those vertices vi ∈ Lk(v) such
that f(vi) < f(v) and the edges vivj such that f(vi) < f(v) and f(vj) < f(v).
The upper link, Lk+(v) is defined in an analogous fashion.

The criticality of a vertex with respect to a PL function f is defined in terms
of its link as demonstrated in Fig. 1. A vertex is regular if its lower link is
a non-empty connected segment of the link. The lower link of a minimum is
empty and the lower link of a maximum consists of the entire link. A k−fold
saddle consists of k + 1 components along the link with k ≥ 1.

The Euler characteristic χ relates the genus γ of M to the critical points of
f :

χ = minima− saddles + maxima = 2− 2γ

If f has a single minimum and a single maximum, then f has 2γ saddles,
or 2 saddles per tunnel. The level sets of f undergo topological changes at
the critical points of f . Level set components originate at minima and end
at maxima. Saddles are classified as split saddles (where a single level set
component splits into two components) and merge saddles (where two level
set components merge into one). Split saddles and minima are referred to as
parent critical points and merge saddles and maxima are children.

3.1.1 Reeb Graph

The Reeb graph encodes the topology of the manifold. It is the skeleton that
remains when the components of the level sets of f on M are contracted to
points. It consists of a series of nodes connected by arcs. The nodes correspond
to critical points in the mesh, and the arcs correspond to mesh components. A
sequence of arcs between a parent and child critical point is called a component
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path.

Fig. 2. A 2-manifold and a corresponding Reeb graph. The critical point pairs are
labeled and were computed using extended persistence.

The sweep algorithm of (Cole-McLaughlin et al., 2003) computes the Reeb
graph by processing mesh vertices in increasing order of function value. The
level set associated with the current isovalue fv is maintained as a collection
of cyclic lists of mesh edges whose function values span fv. The operations
necessary to update the current level set are dependent on the classification
of the vertex v being processed:

• Minima: Create a new component C. Add all edges in Lk+(v) to C.
• Maxima: All edges in Lk (v) belong to the same component C. C is empty

after removal of these edges.
• Regular: All edges in Lk (v) belong to the same component C. Remove

the edges in Lk (v) from C and add edges in Lk+(v) to C.
• Split Saddle: All edges in Lk (v) belong to the same component C. Remove

the edges in Lk (v) from C and add the edges in Lk+(v) to C. C now
contains two components. Separate the components, labeling them D and
E.

• Merge Saddle: The edges in Lk (v) belong to two different components
D and E. Merge the sets associated with D and E and store in C. Remove
the edges in Lk (v) from C and add edges in Lk+(v) to C.

3.1.2 Persistence

Critical points are often ranked in importance by persistence, defined as the
difference in function value between parent and child critical point pairs. Tra-
ditional persistence (Edelsbrunner et al., 2002) pairs split saddles with max-
ima and merge saddles with minima. As seen in Fig. 2 extended persistence
(Agarwal et al., 2006) pairs the global maximum with the global minimum
in addition to the split and merge saddles associated with each tunnel of the
mesh. The algorithm processes each critical point in a Reeb graph in increasing
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order of function value. Critical points become active when they are first pro-
cessed and become inactive after they have been successfully paired. When a
child critical point (merge saddle or maximum) is processed, descending Reeb
graph arcs are traversed monotonically until the first active parent (split sad-
dle or minimum) is reached. In the case that the child critical point is a merge
saddle the two descending arcs are then merged. Note that simple component
path traversal does not guarantee a successful pairing of all critical points.
The mesh in Fig. 2 has “interleaved” tunnels where simple component path
traversal of the Reeb graph beginning at two different children terminates at
the same parent.

3.1.3 Jacobi Set

The Jacobi set is the set of simultaneous critical points of up to k functions
on a k-manifold. Given two functions f and g defined on a 2-manifold, the
Jacobi set, J , is the set of all critical points of the restriction of f to the level
sets of g. These critical points occur when the gradients of f and g are linearly
dependent: ∇f + λ∇g = 0. This implies that J consists of the critical points
of the function:

hλ = f + λg

In the PL setting, functional extrema lie on mesh vertices and the Jacobi set
is comprised of mesh edges.

The algorithm of (Edelsbrunner and Harer, 2002) computes the Jacobi set of
two functions on a mesh, checking the criticality of each edge individually and
returning the union of all critical edges. An edge e with function values (f1, g1)
and (f2, g2), is critical if its lower link is empty or consists of both v3 and v4,
see Fig. 3.

λ is defined such that hλ(v1) = hλ(v2). Thus, for e:

λ =
f1 − f2

g2 − g1

The edge e is critical if both hλ(v2) < hλ(v3) and hλ(v2) < hλ(v4) or if both
hλ(v2) > hλ(v3) and hλ(v2) > hλ(v4).

3.2 Variational Implicit Functions

A radial basis function is a real-valued function whose value depends only
on the distance from a specified origin. In this paper we use the radial basis
function: ρ(x) = |x|.
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Fig. 3. The edge e with function values ranging from (f1, g1) to (f2, g2) is critical if
the gradients of f and g are linearly dependent on e.

A k +1-dimensional variational implicit function ψ (Turk and O’Brien, 1999)
is used to describe the evolution of k-dimensional objects over time. It does
this by minimizing a given energy while satisfying a set of input constraints:
ψ(ci) = hi. The input constraints consist of two types: boundary (where ψ is
zero) and normal (where ψ is positive or negative). The function ψ is expressed
in terms of ρ:

ψ(x) =
n∑

j=1

djρ(x− cj) + P (x)

Here cj are constraint locations, dj are weights and P (x) is a degree one
polynomial. To determine the dj and P (x) that satisfy the interpolation con-
straints, the linear system is solved using the constraints as input:

hi =
n∑

j=1

djρ(ci − cj) + P (ci)

Fig. 4. A 2-dimensional variational implicit function.

4 Formalization of the problem

In this section we introduce a formal framework to analyze the correctness of
a parameterization method.

Definition 1 Let M be a 2−manifold without boundary and consider the map
Φ = (f, g, b) : M → R2 ×R2 × [0, 1] where f and g are Morse functions and b
is a binary function. We call (f, g, b) a Morse field if the following conditions
hold:
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(1) b is 1 on J , the Jacobi set of f and g, and b is constant on each connected
component of M \ J .

(2) On any level set of g, the value of f on distinct components is distinct.
(3) For any component C of a non-critical level set of g:

(a) f |C is a minimal Morse function.
(b) The values of b approaching a critical point of f |C from the left and

from the right are distinct.

Theorem 1 Given two Morse fields Φ1 : M1 → R2 × R2 × [0, 1] and Φ2 :
M2 → R2 × R2 × [0, 1], if Φ1 and Φ2 have the same image MI then Φ−1

2 ◦ Φ1

is a bijection from M1 to M2.

Proof 1 Φ−1
2 ◦ Φ1 is a bijection from M1 to M2 if both Φ1 : M1 → MI and

Φ2 : M2 → MI are bijections. Without loss of generality we show that Φ1 :
M1 → MI is a bijection. By construction MI is the image of Φ1 and therefore
Φ1 : M1 → MI is surjective. Assume by contradiction that there exists x, y ∈
M1, x 6= y such that Φ1 (x) = Φ1 (y). This implies f(x) = f(y) and g(x) = g(y)
and b(x) = b(y). Without loss of generality assume that f is restricted to a
level set of g. By definition, along this level set g(x) = g(y). The ranges of
f restricted to non-critical level set components of g are disjoint, therefore
f(x) = f(y) implies x and y lie on the same component C of a level set of
g. Since f |C is a minimal Morse function there are only two critical points
of f |C on C. By removing those two critical points we are left with two open
intervals C0 and C1 where f is monotonic. This implies if x ∈ C0 then y ∈ C1.
However, by continuity, the value of b on x and y has to be distinct since x
and y belong to two components of g that approach the same critical point from
the left and from the right. This is a contradiction, therefore Φ1 is injective.2

The definition of a Morse field applies to the PL setting where Σ is a 2-
dimensional simplicial complex triangulating M and for each vertex v ∈ Σ
there is a triplet (fv, gv, bv). f, g are piecewise linear Morse functions whose
non-critical level sets are piecewise linear 1-manifolds. The restrictions of f and
g to each others’ non-critical level sets are piecewise linearly Morse functions.

(a) (b)

Fig. 5. (a) A minimal Morse function on a 1-manifold with boundary will have a
maximum and a minimum on the boundary and will behave strictly monotonically
between these two points. (b) On a closed 1-manifold the maximum and minimum
of the minimal Morse function partition the 1-manifold into two topologically equiv-
alent sections, along which the function behaves strictly monotonically.
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Theorem 1 provides a formal characterization of the properties that f , g,
and b must satisfy to guarantee a bijective mapping. It is useful to consider
the following examples to clarify the result. In one dimension a minimal Morse
function, f , on a 1-manifold M with boundary has a maximum and a minimum
that lie on the boundary. When M is closed, the maximum and minimum of
f partition M into two regions, along which f is strictly monotonic, requiring
a front/back bit to disambiguate between these two regions, see Fig. 5.

Assuming the functions f and g form a Morse field, the 2-dimensional case
is a natural extension of the 1-dimensional case. In a Morse field the generic
level sets of f and g are 1−manifolds along which the restriction of the other
function is a minimal Morse function. Just as the critical points of a single
function partition a closed 1-manifold in 1-dimension, the Jacobi set of a Morse
field defined on a closed surface mesh M partitions M into two topologically
equivalent regions. We call the Jacobi set of a Morse field a minimal Jacobi
set. When M is of genus γ a minimal Jacobi set consists of γ +1 closed loops,
see Fig. 6. There is one loop for each tunnel in M and one loop along the
perimeter or silhouette of M . In a mesh of genus γ > 0 each of these loops is
non-trivial, meaning it cannot be contracted to a point.

On the basis of the conditions of Theorem 1, we have designed a surface
mapping algorithm with the following four properties:

Feature Selection We introduce both landmark tunnels and the constrained
silhouette as user-selectable features in the map. These two concepts are
motivated by minimal Jacobi sets.

Computing Paths Jacobi sets are one-manifolds. Therefore, we guarantee
that no loops touch when computing paths on the mesh.

Genus Reduction Theorem 1 considers Morse fields with the same image.
This implies that genus reduction may be necessary during the construction
of the map.

Bijective Mapping Theorem 1 specifies the requirements that f , g and b
must satisfy in order to provide a bijective mapping from M to M ’. However,
it does not imply a method to construct such global functions. To create the
final bijective mapping, we find a common base decomposition and compute
maps locally on each disk.

11



Fig. 6. A minimal Jacobi set partitions M into two topologically equivalent regions.
In this image red denotes maximal values and blue denotes minimal values on a
level set component.

5 Robust Cross Parameterization

5.1 Algorithm Overview

To construct a cross parameterization between two input meshes, M and M ’,
the user first orients the two meshes on screen and the physical location of
each vertex is reassigned according to this orientation. This provides an initial
alignment for the map and eliminates unnecessary self intersections that can
occur when the “upper” part of M is mapped to the “lower” part of M ’. Next,
the user selects landmark features: vertices, tunnels, or constrained silhouettes.
To specify landmark tunnels and constrained silhouettes, the user selects from
a series of automatically generated loops on the mesh. All specified landmark
features are used to construct a common base domain B across which M
and M ’ are each parameterized. Prior to computing B we reduce the genus of
both M and M ’ by cutting along the non-landmark tunnel loops and patching
the resulting holes with triangulated disks. A metamesh containing attribute
information for M and M ’ is generated after embedding both input meshes
in B. A base face F ∈ B may contain one or more loops associated with non-
landmark tunnels (belonging to either M or M ’). We describe the evolution
of non-landmark tunnels in each such face parametrically using a variational
implicit function ψ, guaranteeing a robust evolution of tunnels regardless of
their respective geometry.

5.2 Computing Paths

Several of the steps in our approach require paths to be computed along an
input mesh between two vertices, vp and vc. In many cases, the paths are
restricted to lie within a subset of the simplices of the original mesh. Moreover,
we require that none of the computed paths touch any other paths (except at
path endpoints). In coarsely triangulated regions of the mesh these restrictions
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Fig. 7. Top Row: In a coarse triangulation the possible edge paths computed using
Dijkstra’s algorithm between two different pairs of vertices can intersect (the green
dashed edge). To address this issue face paths are computed between source and
target vertices, from which a new edge path is extracted. Bottom row: Splitting a
face path of length one.

may over constrain the problem when using Dijkstra’s algorithm along mesh
edges, see the top row in Fig. 7.

To address this we compute paths between vertices by conceptually running
Dijkstra’s algorithm on the dual mesh. A shortest face path, FP is first com-
puted between vp and vc and then an edge path is extracted from FP by
splitting mesh edges that are incident on two faces in FP . If a face path is of
length one we split the face as illustrated in the bottom row of Fig. 7.

Remark 1 Calculating paths in this manner guarantees that regardless of the
coarseness of the triangulation we are able to compute paths that do not touch
any other paths (except at path endpoints).

5.3 Feature Selection

Landmark features can be one of three types: landmark vertices, landmark
tunnels, or constrained silhouettes. Landmark vertices are a fundamental part
of all prior cross parameterization algorithms and are hard constraints that
the final mapping must maintain. The user specifies landmark vertices by
associating a vertex from M and and a vertex from M ’ with a vertex in B.

We introduce the notions of landmark tunnels and the constrained silhouette
which contribute both vertices and edges to B. These two concepts are moti-
vated by the minimal Jacobi set, which for a mesh of genus γ contains γ + 1
non-trivial loops. These include the γ non-trivial loops associated with mesh
tunnels and an additional non-trivial loop along the silhouette of the model.
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Fig. 8. Shown in red, the non-trivial loop associated with a tunnel is comprised of
paths traced between the associated parent and child saddles in each of the tunnel’s
components (shown in blue and green).

5.3.1 Landmark Tunnels

For every tunnel in a mesh we automatically compute a single non-trivial
loop using tools from Morse theory. The user provides an initial coarse align-
ment of M and M ’ via screen space orientation and a fair Morse function
(Ni et al., 2004) is generated for each mesh using the screen height minimum
and maximum of the models as fixed input values. We employ Simulation of
Simplicity (SoS) (Edelsbrunner and Mucke, 1988) and split all saddles with
degree greater than 2 as described in (Edelsbrunner et al., 2003).

We determine the parent/child critical point pair for each tunnel in M by
computing the Reeb graph using the approach of (Cole-McLaughlin et al.,
2003) and the extended persistence algorithm of (Agarwal et al., 2006). During
Reeb graph construction we build a list for each face in M of the Reeb graph
components it spans.

For each tunnel, the loop that is computed is comprised of two paths between
the associated parent and child saddles; one in each of the tunnel’s compo-
nents. Paths are computed using the method described in section 5.2. The
domain of each face path is restricted to faces that span the tunnel’s associ-
ated component path, see Fig. 8. Pairs of paths are computed in increasing
order of persistence and component labels are merged in M as we proceed.

The user selects α of the pre-computed loops from each mesh to identify the
tunnels that will remain as features in the map. When a loop is constructed its
homotopy type is dependent on the function used to compute the Reeb graph:
a loop either walks “around” a tunnel or around the complementary handle,
see Fig. 9. When the user prefers a loop of a different homotopy type than
that which was automatically generated, they can either “toggle” the loop or
can specify an alternate non-trivial loop directly on M or M ’ manually. To
toggle a loop l, the user selects l and a vertex vl along l. The toggled loop is
the edge path that is extracted from the shortest face path connecting vl to
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vl such that:

(1) The face path does not touch l at any point other than vl.
(2) The face path begins and ends with faces that are on opposite sides of l.

Fig. 9. Non-trivial loops can belong to one of two homotopy types. Shown in red,
the loop on the left walks “around” the tunnel and the loop on the right walks
around the complementary handle.

After selecting a loop the user must identify n, n ≥ 3, vertices along the loop.
These are landmark vertices that partition the loop into n distinct edge paths,
each of which corresponds to an edge in B.

5.3.2 Constrained Silhouette

In addition to landmark tunnels, a constrained silhouette can be selected as a
feature in the map. A constrained silhouette is computed using the Jacobi set
of the screen space coordinate functions, x and y of the user-oriented input
meshes.

Using the approach of (Edelsbrunner and Harer, 2002), we obtain a series of
closed loops on the mesh, one of which contains global functional extrema.
From these closed loops we construct a constrained silhouette that satisfies
the following properties:

(1) It contains the global extremal vertices of each function: xmin, xmax, ymin,
and ymax.

(2) It is a 1-manifold.
(3) It does not touch any tunnel loops.

Screen space coordinate functions rarely form a Morse field and, as a result,
their Jacobi set may be non-manifold and/or may “wind” extraneously along
the mesh, see Fig. 10.

To generate a constrained silhouette that satisfies the necessary conditions, we
calculate four distinct shortest paths: xmin to ymax, ymax to xmax, xmax to ymin,
and ymin to xmin. We label the set of all mesh edges as E, and the set of edges
belonging to a tunnel loop are labeled ET . All edges belonging to the Jacobi
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Fig. 10. The Jacobi set of a statue (left) winds and is non-manifold. The constrained
silhouette (center/right) does not touch any of the tunnel loops and is a 1-manifold.

set and the neighbors of those edges are labeled EJ . To guarantee robustness
against coarse triangulations we compute the constrained silhouette paths as
described in section 5.2. We first attempt to find the shortest face path whose
coincident edges belong to EJ \ ET . When this is not possible we find the
shortest face path with coincident edges belonging to E \ ET (this is always
possible as all non-trivial loops are non-separating). The constrained silhouette
consists of the four edge paths extracted from these face paths.

If selected as a feature, the constrained silhouette partitions the mesh into
two regions (front and back) and thus the remaining landmark vertices and
landmark tunnel loops are required to belong to the same region(s) in both
M and M ’.

5.4 Base Mesh

Prior to generating a common base mesh B, we reduce the genus of both M and
M ’ using their respective non-landmark tunnel loops. Cutting a mesh along a
non-trivial loop creates two “holes”, each of which is filled with a triangulated
disk that is proportional in size to the number of vertices in the loop, see Fig.
11. Combinatorially, the triangulated disk consists of a series of concentric
rings of vertices that are connected by annuli of faces. The number of vertices
in each ring decreases by n (a user specified parameter) and the positions of
vertices in the interior of each disk are assigned by solving a linear system of
equations using the positions of the loop vertices as fixed input values.

A common base mesh B, see Fig. 12, is computed by tracing consistent pairs
of paths between landmark vertices in M and M ’ that correspond to edges in
B. At this stage in the algorithm M and M ’ are now of equal genus, α. To
guarantee that M and M ’ are decomposed into sets of topologically equivalent
disks, the topology of the path networks in M and M ’ must be equivalent. It
is observed in (Schreiner et al., 2004) that the path networks should contain
both a minimum spanning tree of the landmark vertices and 2α non-trivial
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(a) (b)

Fig. 11. (a) A mesh with a non landmark tunnel loop highlighted in red. (b) The
mesh is cut along the non-landmark tunnel loop and the resulting holes are filled
with triangulated disks.

loops, prior to including any paths that form trivial loops on either mesh. We
note that, by cutting the mesh along each of the α landmark tunnel loops, we
introduce 2α non-trivial loops on the mesh satisfying the second portion of
this requirement (see Fig. 13 (a)).

Similarly to (Schreiner et al., 2004; Kraevoy and Sheffer, 2004) we initially
compute all possible pairs of face paths between landmark vertices in M and
M ’. However, in our algorithm base mesh edges may already exist due to
landmark tunnels and/or the constrained silhouette and it is unnecessary to
recompute the face paths between the vertices in these features. To guarantee
that each face in B is a topological disk, we iteratively introduce a new edge e
in B until B is triangulated. The edges are added in a greedy fashion based on
shortest combined path lengths in M and M ’ while ensuring that a minimum
spanning tree of the landmark vertices is generated prior to introducing any
trivial loops in either M or M ’.

The paths are computed as described in section 5.2 and are not allowed to
touch mesh edges already embedded in base edges of B nor are they allowed to
touch non-landmark tunnel loop edges. As each e is added to B a sweep of the
mesh faces in M and M ’ is performed to guarantee that the landmark vertices
contained in the new partitions of M and M ’ are equivalent. Path pairs that
do not partition M and M ’ in an equivalent manner are disregarded.

When adding an edge e, the face path in M associated with e may need to be
recomputed in order to maintain the cyclic ordering of edge paths at landmark
vertices. The edge paths incident on a landmark vertex v decompose the region
around v into sectors. When the face paths associated with e in M and M ’
do not begin/end in the same sectors we recompute the path in M forcing
the face path’s beginning and ending sectors to agree with the beginning and
ending sectors of the corresponding face path in M ’.

After a triangulation has been computed, the landmark tunnel loops are
merged within B, M , and M ’, see Fig. 13. Merging tunnels can cause a single
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Fig. 12. Base mesh decomposition of a torus (left) and a mechanical part originally
of genus 9 (right). The central tunnel in the mechanical part and the tunnel in
the torus have been specified as landmark tunnels. The remaining 8 tunnels in the
mechanical part have been filled with triangulated disks.

edge in B to form a closed loop. Also, multiple edges in B may now share
the same endpoints. Additional landmark vertices are automatically inserted
in edges that fall into either of these categories and additional edge paths are
computed to complete the final base triangulation. The remaining vertices of
M and M ’ are embedded in B using a traditional surface parameterization
technique (Floater, 1997) on each base mesh face.

5.5 Metamesh

A metamesh contains the attribute information associated with both source
and target meshes. Traditional metamesh construction (Lee et al., 1999) over-
lays M and M ’ creating a super-mesh with the connectivity information from
both input meshes. There are two drawbacks to this approach: the output is
often an order of magnitude greater in size than the input meshes and the
final metamesh may contain a large number of poorly shaped triangles.

(a) (b) (c)

Fig. 13. (a) M is cut open along a landmark tunnel loop creating 2 loops on the
mesh: the loop formed by edges e1 and e2 and the loop formed by edges e1′ and e2′ .
Edges e3, e4, and e5 are computed while M is cut. (b) The landmark tunnel loop
is merged by gluing edges e1 and e1′ and e2 and e2′ back together. Now e5 forms
a single loop and edges e3 and e4 share the same endpoints. (c) New vertices are
automatically added along e4 and e5 to avoid problems with the base triangulation.

18



To achieve a higher quality metamesh we re-mesh each base face individually.
For each base face F ∈ B our re-mesh algorithm consist of three steps:

• Compute combinatorial structure of F .
• Compute parametric locations of all vertices v ∈ F .
• Compute physical locations of all vertices v ∈ F with respect to M and M ’.

Combinatorially, each face patch F is comprised of a series of concentric rings
of vertices connected by strips of faces. The number of vertices in each ring
increases by a user-defined parameter n until the total vertices in the patch is
equal to the greater of the two interior face vertex counts associated with M
and M ’. To connect all face patches, edge paths are created for each edge e
in B (with vertex count equal to the greater of the vertex counts associated
with e in M and M ’). The edge paths corresponding to edges of a face F ∈ B
form a ring of vertices RF that can be connected to the boundary of the face
patch of F via an annulus of faces. The parametric locations of the vertices in
each patch F are computed by fixing the locations of the vertices in RF and
using a traditional surface parameterization technique (Floater, 1997) to solve
for positions of vertices on the interior of F . The physical location for each
vertex v is computed with respect to both M and M ’ using the barycentric
coordinates of the faces in M and M ’ that contain v parametrically.

5.6 Variational Implicit Functions

Topological changes in the cross parameterization are described using vari-
ational implicit functions, ψ. For each face F ∈ B containing at least one
non-landmark tunnel loop, ψF is derived automatically using the parametric
descriptions of M and M ’. Each ψF is a 3-dimensional variational function
whose zero level set describes the evolution of a 2-dimensional source curve
to a 2-dimensional target curve over time. We define ψF parametrically to
guarantee that the deformation is robust regardless of mesh geometry.

Fig. 14. Negative normal constraints are placed at the center of the triangulated
disk (blue). Boundary constraints (black) are placed at each non-landmark tunnel
loop vertex. Four positive normal constraints (red), are placed around each loop.
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M is positioned at time 0 and M ’ is positioned at a distance that is equal to
twice the “parametric radius” of the largest non-landmark tunnel loop in F .
The parametric radius of a loop l is defined to be the longest straight line para-
metric distance between a vertex in l and the center of the triangulated disk
associated with l. This positioning of time planes guarantees that every non-
landmark tunnel has adequate time to “close” during the map. The position of
the M ’ time plane can be adjusted to achieve various effects when F contains
non-landmark tunnel loops associated with both M and M ’. Specifically, the
proximity of the time planes (in conjunction with the parametric location of
the tunnels) determines whether tunnels from M and M ’ will merge together
or whether tunnels in M will “close” entirely prior to the “opening” of tunnels
in M ’.

We place positive normal constraints at the base vertices of F in the time
planes associated with both M and M ’. This guarantees a valid ψF is com-
puted regardless of differing mesh genus. Boundary constraints are positioned
at all vertices belonging to a non-landmark tunnel loop and a negative normal
constraint is placed at the centers of the triangulated disks associated with
each tunnel. Four additional positive constraints are positioned around each
embedded non-landmark tunnel loop (taking into consideration the position
of the other loops to guarantee conflict-free placement). Fig. 14 shows the
constraint locations for a 9-handle torus.

6 Optimizations

In an effort to improve the visual quality of the map, we optimize in two
ways prior to finalizing the metamesh: edge path optimization and vertex
optimization.

(a) (b)

Fig. 15. (a) Upon computing the initial base triangulation of a cat dataset the pink
and yellow base faces are poorly shaped (i.e. portions of the triangles are nearly
degenerate). (b) After edge path optimization the shapes of the pink and yellow
base faces are much improved.
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6.1 Edge Path Optimization

The parametric distortion associated with a base face F increases when the
embedding of F is not well shaped (e.g. long skinny triangles). Therefore, after
computing the base mesh B we optimize all edge paths in both M and M ’ in
an effort to improve the shape of the embedding of B in each input mesh.

For a given base mesh edge e ∈ B with end points va and vb, there are two
incident base faces F1 and F2. The quadrilateral region formed by F1 and F2 is
re-mapped to the plane using a traditional surface parameterization technique
(Floater, 1997). The original edge path associated with e is replaced with a
new shortest path from va to vb that is computed using Dijkstra’s algorithm in
the parametric domain. The face sets associated with F1 and F2 are updated
and their respective embeddings in B are recomputed.

The edges are iteratively optimized in both M and M ’. Due to the manner
in which the paths are modified, the topology of the path networks remains
constant, however, the shape of the base faces improves reducing parametric
distortion, see Fig. 15.

6.2 Vertex Optimization

In addition to edge path optimization we perform iterative optimization of
mesh vertices. The parametric location of the vertices are optimized in a se-
ries of passes, first relaxing the positions of M followed by a relaxation of
the vertices in M ’. This process allows the parameterizations to “slide” with
respect to each other in an effort to improve the overall stretch efficiency of
the map. A mesh vertex is allowed to move to a position within the kernel
of its one ring that reduces the symmetrized stretch (Schreiner et al., 2004)
between the two meshes:

L2(T ) =
AT ′AM

A2
M ′

(
1

γ2
+

1

Γ2

)
+

AT AM ′

A2
M

(
γ2 + Γ2

)

Here AT is the surface area of a face T with respect to M , AT ′ is the surface
area of T with respect to M ’, AM and AM ′ are the surface areas of M and M ’
respectively and γ and Γ are the singular values of the map between M and
M ’ for face T .
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Fig. 16. Ten landmark vertices are associated with the botijo and amphora meshes:
4 along the constrained silhouette and 3 per landmark tunnel loop.

7 Results

We demonstrate the results of our cross parameterization scheme by mor-
phing between meshes of differing genus. The embedding of the surface at
each stage in the morph from M to M ’ is computed as a simple linear in-
terpolation of corresponding vertex positions between M and M ’. In some
cases self-intersections in the morph sequence are entirely unavoidable with-
out temporarily cutting the mesh (e.g. a morph between a knotted torus and
torus). While the design of a good interpolation scheme is not the focus of
this paper, one could use the approach of (Kilian et al., 2007) to minimize the
number of self intersections in the morph. Topological transitions are handled
by evaluating the variational implicit function value of each metamesh vertex
and clipping out those vertices with negative function values.

Fig. 19 shows the results of our approach on a variety of data sets. Our initial
alignment scheme provides a useful mechanism to control the visual quality of
the map using landmark tunnels and the constrained silhouette. In Fig. 19(a)-
(d) the constrained silhouette has been specified as a feature with 4 landmark
vertices placed along each silhouette. Additionally, a single landmark tunnel

(a) (b) (c)

Fig. 17. The full resolution hand in (a) has 38218 vertices and is genus 1. In (c) a
simplified version of the hand is shown with 8808 vertices and genus 0. In (b) we
show a 50% morph. The constrained silhouette is shown in red in (a) and (c).
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(with 3 landmark vertices/tunnel) has been specified for the meshes in Fig.
19(a) and Fig. 19(b). Whereas previous techniques are unable to generate
maps between meshes with convoluted geometry, our approach is robust and
successfully produces a map, see Fig. 19(d).

Fig. 16 shows the landmarks used to generate a map between two vases of
unequal genus: the botijo (genus 5) and amphora (genus 2). Two landmark
tunnels in each mesh are selected with three landmark vertices assigned per
tunnel. The constrained silhouette is also specified as a landmark, along which
4 landmark vertices are positioned. The resulting morph sequence is shown in
Fig. 19(e). Using the variational implicit approach, a smooth deformation is
automatically calculated for the non-landmark tunnels.

In our experiments we have found that constrained silhouettes are a very use-
ful tool when (1) they contain the same desired landmarks and (2) a traversal
of the two silhouettes encounters the landmark pairs in the same order. This
is the case in the maps in Fig. 19(a)-(e). This is also the case in Fig. 17. A
hand data set at full resolution is shown in Fig. 17(a). During model acqui-
sition a small tunnel was introduced between the pointer and middle fingers.
A simplified version of the model that is genus 0 is shown in Fig. 17(c). The
constrained silhouettes, shown in red, are specified as landmarks and our al-
gorithm produces a natural map between the two meshes. Fig. 17(b) shows
the morph at 50%. Fig. 18 illustrates a case where the constrained silhouettes
would not be selected as a landmark in the map. The constrained silhouette
of the horse contains all 4 legs, while that of the feline contains only two of
the legs. The map in Fig. 19(f) was created without constrained silhouettes
by specifying 15 landmark vertices on each mesh.

We show in Fig. 19 (g) that our algorithm is robust and can handle meshes of
high genus by mapping between the dragon of genus 46 and the Asian dragon
of genus 0.

Fig. 18. The constrained silhouettes of the horse (left) and feline (right) data sets
are shown in red.
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8 Conclusion and Future Work

In this work we have used Morse theory to develop a formalism to analyze
the correctness of a parameterization scheme. Furthermore, we have created
a provably robust method to generate maps between meshes of arbitrary and
differing genus. Our approach is motivated by the formalism and is entirely
parametric, guaranteeing a successful map even when the geometry of the
input is overly convoluted. We introduce a novel alignment scheme that allows
the user to specify landmark tunnels and landmark constrained silhouettes
in addition to standard landmark vertices. Moreover, our algorithm has no
problem processing coarse meshes with high genus.

We have focused on the formal properties and generality of the procedure that
constructs a map between two meshes of unequal genus. Our future plans in-
volve optimizing the visual quality of the map. Specifically, when the geometry
of M and M ’ differs greatly, the use of linear interpolation can cause self-
intersections and unnatural shape transitions. While the optimization tech-
niques in section 6 do improve the visual quality of the map, they are limited
when the overall difference in geometry is too great. We plan on investigating
alternate interpolation schemes that could provide a more intuitive looking
map in these cases. Additionally, we plan to explore alternate base mesh gen-
eration algorithms that take into consideration the shapes of both M and
M ’.

When tracing shortest paths on the mesh, we compute a shortest face path
and refine the mesh along the path to obtain a final edge path. While this
approach guarantees robustness against coarse triangulations, it can increase
the size of the mesh unnecessarily in triangulations that are dense enough
to support traditional Dijkstra edge path computations. We plan to include
a hybrid path generation approach that accounts for both dense and coarse
regions in the mesh.

While our algorithm robustly handles maps between meshes of differing genus,
our metamesh generation code is un-optimized and is the dominating factor
in our timings. Running the algorithm from start to finish (including user
interaction times) takes around 4-5 hours when generating metameshes with
∼790K faces, while metameshes with ∼55K faces take around 15-20 minutes.
We aim to address performance issues in future work.
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